Магнит движется к кольцу южным полюсом

Если присоединить катушку, в которой возникает индукционный ток, к гальванометру, можно обнаружить, что направление этого тока зависит от того, приближается ли магнит к катушке, или удаляется от нее. Причем возникающий индукционный ток взаимодействует с магнитом — притягивает или отталкивает его.

Катушка с протекающей по ней током подобна магниту с двумя полюсами — северным и южным. Направление индукционного тока определяет, какой конец катушки играет роль северного полюса, из которого выходят линии магнитной индукции. В каких случаях катушка будет притягивать магнит, а в каких отталкивать, можно предсказать, опираясь на закон сохранения энергии.

Взаимодействие индукционного тока с магнитом

Если магнит приближать к катушке, то в ней появится индукционный ток такого направления, что магнит обязательно отталкивается. Для сближения магнита и катушки при этом нужно совершить положительную работу. Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту. Одноименные же полюсы отталкиваются. При удалении магнита, наоборот, в катушке возникает ток такого направления, чтобы появилась притягивающая магнит сила.

Представьте, что все было бы иначе. Тогда при введении магнита в катушку он сам бы устремлялся в нее. Это противоречит закону сохранения энергии, так как при этом увеличилась бы кинетическая энергия при одновременном возникновении индукционного тока, который также затрачивает часть энергии. Кинетическая энергия и энергия тока в этом случае возникали бы из ничего, без затрат энергии, что невозможно.

Справедливость вывода можно подтвердить с помощью следующего опыта. Пусть на свободно вращающемся стержне закреплены два алюминиевых кольца: с разрезом и без разреза. Если поднести магнит к кольцу без разреза, оно будет отталкиваться. Если поднести его к кольцу с разрезом, ничего не произойдет. Это связано с тем, что в нем не возникает индукционный ток. Этому препятствует разрез. Но если отдалять магнит от кольца без разреза, то оно начнет притягиваться.

Опыты показывают, что притягивание или отталкивание кольца с индукционным током зависит от того, удаляется магнит, или притягивается. А различаются они характером изменения линий магнитной индукции, пронизывающих поверхность, ограниченную кольцом. В первом случае (рис. а) магнитный поток увеличивается, во втором (рис. б) — уменьшается. То же самое можно наблюдать в опытах с магнитом и проводящей катушкой.

Причем в первом случае линии индукции B’ магнитного поля, созданного возникшем в катушке индукционным током, выходят из верхнего конца катушки, та как катушка отталкивает магнит. Во втором же случае напротив, они входят в этот конец.

Правило Ленца

Описанные выше опыты позволяют делать вывод, что при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с такой индукцией, которая увеличивает магнитный поток через витки катушки.

Правило направления индукционного тока носит название правила Ленца.

Правило Ленца

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Применять правило Ленца для нахождения направления индукционного тока Ii в контуре надо так:

  1. Установить направление линий магнитной индукции B внешнего магнитного поля.
  2. Выяснить, увеличивается ли поток магнитной индукции этого поля через поверхность, ограниченную контуром (ΔΦ>0), или уменьшается (ΔΦ<0).
  3. Установить направление линий магнитной индукции B магнитного поля индукционного тока Ii. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям B при ΔΦ>0 и иметь одинаковое с ними направление при ΔΦ<0.
  4. Зная направление линий магнитной индукции B, найти направление индукционного тока Ii, пользуясь правилом правой руки.

Пример №1. Найти направление индукционного тока, возникающего в кольце во время приближения к нему магнита (см. рисунок).

Линии магнитной индукции магнита обращены в сторону кольца, так как он направлен к нему северным полюсом. Так как магнит приближается к кольцу, магнитный поток увеличивается. Следовательно, кольцо отталкивается. Тогда оно обращено к магниту одноименным — северным — полюсом. Применим правило правой руки. Так как линии магнитной индукции выходят из северного полюса, направим к нему большой палец. Теперь четыре пальца руки покажут направление индукционного тока. В нашем случае он будет направлен против направления хода часовой стрелки.

Задание EF17577

Медное кольцо на горизонтальном коромысле поворачивается вокруг вертикальной оси ОВ под действием движущегося магнита С. Установите соответствие между направлением движения магнита, вращением коромысла с кольцом и направлением индукционного тока в кольце.

К каждой позиции первого столбца подберите соответствующую позицию второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

МАГНИТ ПОВОРОТ КОРОМЫСЛА И ТОК В КОЛЬЦЕ
А) движется по направлению к кольцу, северный полюс обращён к кольцу 1) коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт по часовой стрелке
Б) движется к кольцу,
к кольцу обращён южный полюс
2) коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт против часовой стрелки
3) коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт по часовой стрелке
4) коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт против часовой стрелки

Алгоритм решения

  1. Записать правило Ленца.
  2. В соответствии с правилом Ленца установить, что произойдет, если к кольцу поднести магнит северным полюсом.
  3. В соответствии с правилом Ленца установить, что произойдет, если к кольцу поднести магнит южным полюсом.

Решение

Запишем правило Ленца:

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Следовательно, если поднести к кольцу магнит северным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется северный полюс. Используем правило правой руки и расположим большой палец правой руки так, чтобы он указывал в сторону северного полюса кольца с индукционным током. Тогда четыре пальца покажут направление этого тока. Следовательно, индукционный ток направлен по часовой стрелке.

Если поднести к кольцу магнит южным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону от кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется южный полюс. Используем правило правой руки и получим, что в этом случае индукционный ток будет направлен против часовой стрелки.

Так как магнит подносят к кольцу, а не отодвигают от него, то кольцо всегда будет отталкиваться, поскольку в нем возникают силы противодействия. Следовательно, позиции А соответствует строка 1, а позиции Б — строка 2.

Ответ: 12

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18621

На рисунке запечатлён тот момент демонстрации по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится вблизи сплошного металлического кольца. Если магнит выдвигать из алюминиевого кольца, то кольцо перемещается вслед за магнитом. Это движение кольца – результат действия

Ответ:

а) силы гравитационного взаимодействия между кольцом и магнитом

б) силы Ампера, действующей со стороны магнитного поля магнита на кольцо, по которому идёт индукционный ток

в) кулоновских (электростатических) сил, которые возникают при движении магнита относительно кольца

г) воздушных потоков, вызванных движением руки и магнита


Алгоритм решения

  1. Проанализировать предложенные варианты ответа.
  2. Установить природу взаимодействия магнита и кольца.
  3. Выбрать верный ответ.

Решение

Гравитационные силы между магнитом и кольцом ничтожно малы при данных массах и расстояниях, поэтому они не могли вызвать притяжения кольца к магниту.

Кулоновские силы характеризуют силу электростатического взаимодействия зарядов. Поскольку магнит не имеет заряда, между ним и кольцом такие силы не возникают.

Металлическое кольцо достаточно тяжелое для того, чтобы заставить его стремительно двигаться вслед за магнитом.

Но вариант с силой Ампера подходит, так как сила Ампера — это сила, с которой действует магнитное поле на проводник с током. В момент, когда магнит двигают в стороны от кольца, магнитный поток, пронизывающий его, меняется. Это вызывает образование в кольце индукционного тока, который также порождает магнитное поле, противодействующее магнитному полю постоянного магнита.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF19032

Катушка 1 включена в электрическую цепь, состоящую из источника напряжения и реостата. Катушка  2 помещена внутрь катушки  1 и замкнута (см. рисунок).

Из приведённого ниже списка выберите два правильных утверждения, характеризующих процессы в цепи и катушках при перемещении ползунка реостата вправо.

Ответ:

А) Сила тока в катушке № 1 увеличивается.

Б) Вектор индукции магнитного поля, созданного катушкой № 1, всюду увеличивается.

В) Магнитный поток, пронизывающий катушку № 2, увеличивается.

Г) Вектор индукции магнитного поля, созданного катушкой № 2, в центре этой катушки направлен от наблюдателя.

Д) В катушке № 2 индукционный ток направлен по часовой стрелке.


Алгоритм решения

  1. Проверить истинность каждого утверждения.
  2. Выбрать только истинные утверждения.

Решение

Согласно утверждению А, при перемещении ползунка реостата вправо сила тока в катушке №1 увеличивается. Перемещая ползунок реостата вправо, мы увеличиваем сопротивление. Следовательно, сила тока уменьшается. Утверждение А — неверно.

Согласно утверждению Б, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №1, всюду увеличивается. Так как сила тока уменьшается, вектор индукции магнитного поля ослабевает. Утверждение Б — неверно.

Согласно утверждению В, при перемещении ползунка реостата вправо магнитный поток, пронизывающий катушку №2, увеличивается. Так как магнитное поле ослабевает, будет уменьшаться и магнитный поток, пронизывающий катушку № 2. Утверждение В — неверно.

Согласно утверждению Г, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки направлен от наблюдателя. В катушке №1 ток течёт по часовой стрелке, и по правилу буравчика эта катушка будет создавать магнитное поле, направленное от наблюдателя. В силу того, что сила тока в цепи уменьшается, будет уменьшаться и магнитный поток, пронизывающий вторую катушку. При этом согласно правилу Ленца во второй катушке будет создаваться индукционный ток, который направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван. В этом случае вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки сонаправлен с внешним полем и направлен от наблюдателя. Утверждение Г — верно.

Согласно утверждению Д, при перемещении ползунка реостата вправо в катушке №2 индукционный ток направлен по часовой стрелке. По правилу правой руки, индукционный ток в катушке  2 направлен по часовой стрелке. Утверждение Д — верно.

Ответ: ГД

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алиса Никитина | Просмотров: 7.6k

Направление индукционного тока в контуре зависит от того, увеличивается или уменьшается магнитный поток через этот контур.

Убедимся в этом на опыте с помощью прибора, изображённого на рисунке (1).

mag1.png

Рис. (1). Опыт № (1)

Узкая алюминиевая пластинка с двумя алюминиевыми кольцами на концах (одно — сплошное, другое — с разрезом) находится на стойке и может свободно вращаться вокруг вертикальной оси.

Попытаемся внести полосовой магнит северным полюсом в сплошное кольцо (рис. (1)). Оно уходит от магнита, как будто отталкивается от него, поворачивая при этом всю пластинку. Повторим эксперимент, будем подносить магнит к кольцу южным полюсом. Результат будет точно таким же. Кольцо оттолкнется. Если подносить магнит к кольцу с прорезью, то ничего не произойдет. Замена полюса магнита изменений тоже не вносит.

Данное явление можно объяснить следующим образом:

при приближении магнита к кольцу без прорези возрастает магнитный поток сквозь площадь кольца. Так как кольцо замкнуто, то в нем возникает индукционный ток.

В кольце с разрезом ток циркулировать не может.

Ток в сплошном кольце создаёт магнитное поле, поэтому кольцо приобретает свойства магнита. Кольцо отталкивается от магнита. Значит, кольцо и магнит обращены друг к другу одноименными полюсами, а векторы магнитной индукции их полей направлены в противоположные стороны.

Магнитное поле индукционного тока противодействует увеличению внешнего магнитного потока через кольцо.

Внося полосовой магнит, мы увеличиваем интенсивность магнитного поля, действующего со стороны магнита на кольцо. В кольце возникает магнитное поле, которое ослабляет поле полосового магнита, то есть направлено противоположно внешнему. Значит, ток в кольце будет направлен по часовой стрелке.

Направление индукционного тока в кольце определяется правилом правой руки.

Поменяем направление полосового магнита. Из кольца будем удалять магнит. Кольцо будет двигаться за магнитом. Получается, что кольцо притягивается к магниту.

Объяснение: притяжение возможно только в том случае, если кольцо и магнит обращены друг к другу разноименными полюсами. В этом случае направление векторов магнитной индукции магнитных полей кольца и магнита совпадают.

Магнитное поле, создаваемое индукционным током, поддерживает уменьшающийся магнитный поток через площадь кольца.

Убирая полосовой магнит из кольца, мы уменьшаем интенсивность магнитного поля, действующего со стороны магнита на кольцо. Магнитное поле кольца будет поддерживать поле полосового магнита, значит, сонаправлено внешнему магнитному полю. Поэтому, ток в кольце будет направлен против часовой стрелки.

Общее правило впервые сформулировал российский ученый Эмилий Христианович Ленц в (1834) году:

правило Ленца
Индукционный ток в замкнутом проводящем контуре принимает такое направление, что он ослабляет первопричину своего возникновения.

Источники:

Рис. 1. Опыт № 1. © ЯКласс.

Магнит вдвигается из кольца южным полюсом. Каково направление индукционного тока в кольце?

  1. Направление вектора B магнита вверх. По правилу Ленца ток в кольце создаст магнитное поле вектор В которого совпадает с полем магнита. По правилу буравчика ток направлен против часовой стрелки …

    • Комментировать
    • Жалоба
    • Ссылка

Найди верный ответ на вопрос ✅ «Магнит вдвигается из кольца южным полюсом. Каково направление индукционного тока в кольце? …» по предмету 📙 Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Главная » Физика » Магнит вдвигается из кольца южным полюсом. Каково направление индукционного тока в кольце?

Опубликовано 13.06.2017 по предмету Физика от Гость
>> <<

Магнит выдвигается из кольца южным полюсом. Каково направление индукционного тока в кольце?

Ответ оставил Гость

Направление вектора B магнита вверх. По правилу Ленца ток в кольце создаст магнитное поле вектор В которого совпадает с полем магнита. По правилу буравчика ток направлен против часовой стрелки.

Оцени ответ

Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Найти другие ответы

Загрузить картинку

Явление электромагнитной индукции было открыто английским ученым Майклом Фарадеем. Он не только обнаружил это явление, но и смог его объяснить.  Немного позже в 1834 году российский ученый-физик Генрих Ленц смог определить направление индукционного тока в контуре.  Для своего опыта, он собрал следующую установку: легкое коромысло с двумя кольцами (одно кольцо сплошное, второе с разрезом) укреплено на подставке с помощью иглы. Коромысло может свободно вращаться вокруг своей оси. Кольца коромысла изготовлены из алюминия, следовательно, магнитом они не притягиваются, но если магнит вносить в замкнутое кольцо (замкнутый контур), то кольцо начинает отталкиваться от магнита и коромысло начинает вращаться. Почему это происходит? Поднося магнит к кольцу, замкнутый контур начинает пронизывать увеличивающийся магнитный поток. Который, как нам уже известно, вызывает не только появление индукционного тока в самом контуре, но и появление магнитного поля вокруг кольца.  Причем, если магнитный поток увеличивается, то магнитное поле индукционного тока будет противодействовать его дальнейшему увеличению. Поменяем полярность магнита, и снова внесем его в замкнутое кольцо. Оно снова отталкивается. Следовательно, индукционный ток, который возникает в кольце, создает вокруг него магнитное поле, то есть кольцо начинает обладать свойством магнита. При приближении магнита кольцо отталкивается, значит, полюса магнита и магнитного поля кольца обращены друг к другу одноименными полюсами. Вектора магнитной индукции магнита и кольца противонаправлены.  В случае, если магнит подносят северным полюсом к кольцу, то вектор магнитной индукции кольца направлен вправо. Направление индукционного тока в кольце легко определить по правилу правой руки. Большой палец правой руки показывает направо, четыре согнутых пальца показывают направление тока в кольце.  Если подносят магнит южным полюсом, — вектора магнитной индукции противонаправлены. Но теперь вектор магнитной индукции кольца направлен влево. Снова определим направление индукционного тока в контуре по правилу правой руки. Большой палец показывает влево, четыре согнутых пальца показывают, что движение тока будет от нас.  А что произойдет, если внести в разомкнутое кольцо магнит. Поднося по очереди к разомкнутому кольцу магнит сначала северным, а затем южным полюсом, видим, что коромысло остается неподвижным. Это происходит потому, что в разомкнутом контуре индукционный ток не возникает. Теперь, аккуратно придерживая коромысло, поместим магнит в замкнутое кольцо. Отпустим коромысло. И начнем выводить магнит из кольца. Кольцо притягивается к магниту, и коромысло начинает вращаться, следуя за магнитом.
Почему это происходит?  Магнитное поле индукционного тока теперь начинает препятствовать уменьшению магнитного потока. Поменяв полярность магнита, снова аккуратно поместим его в кольцо. Выводя кольцо из магнита, наблюдаем его притяжение, коромысло пришло в движение и следует за магнитом. Так как кольцо притягивается, следовательно, вектора магнитной индукции постоянного магнита и кольца сонаправлены. Направление индукционного тока мы также можем определить по правилу правой руки.  В первом случает ток направлен от нас, во втором к нам. Теперь аккуратно поместим магнит в разомкнутое кольцо.  Выводя магнит из кольца, движение кольца не наблюдаем.  Мы еще раз убедились в том, что индукционный ток возникает только в замкнутом кольце. На основании данных опытов Генрих Ленц сформулировал общее правило (для случая увеличения и уменьшения магнитного потока через замкнутый контур). Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешного магнитного потока, которое вызвало этот ток.
Рассмотрим пример. 
Замкнутое кольцо подвешено на нити.  Определим направление индукционного тока в кольце при введении в него южного полюса магнита. При внесении магнита, согласно правилу Ленца, магнитное поле индукционного тока, который возникнет в кольце, будет противодействовать дальнейшему увеличению магнитного потока. Следовательно, кольцо оттолкнётся, значит, вектора магнитной индукции противонаправлены. По правилу правой руки определяем, что ток направлен от нас.

 

Понравилась статья? Поделить с друзьями:
  • Магнит движется вверх определить направление тока
  • Магнит двигателя стиральной машины бош
  • Магнит двигатель свободная энергия
  • Магнит двигается относительно катушки
  • Магнит двигается в кольцо северным полюсом каково направление индукционного тока в кольце